Plan 08IA - Grado en Arquitectura Naval

Asignatura 85001211 - Calculo II

APOLO

11 de Marzo del 2011

Básico

Semestre:

2 (Durante el primer semestre se propondrá un grupo de la asignatura exclusivamente para repetidores)

Idioma:

ESPAÑOL, ESPAÑOL

Denominación en Inglés (mayúsculas) para Universitas Xxi-Académico:

CALCULUS II

Denominación para Publicación (español):

Cálculo II

Denominación para Publicación (inglés):

Calculus II

Coordinador:

Fabricio Macia LangFabricio Macia Lang

Profesorado:

FABRICIO MACIA LANG (C)

• Despacho: P01.02

• e-mail: <u>Fabricio.macia@upm.es</u>

ALICIA CANTÓN PIRE

• Despacho: P01.06

• e-mail: <u>Alicia.canton@upm.es</u>

CAROLINA MENDOZA PARRA

• Despacho: P01.02

• e-mail: Carolina.mendoza@upm.es

Requisitos Previos (asignaturas que Deben Estar Superadas):

Objetivos y resultados de aprendizaje

Objetivos:

OBJETIVO 1: Que los estudiantes se formen en el aprendizaje de nuevos métodos y teorías, y en la versatilidad para adaptarse a nuevas situaciones basándose en los conocimientos adquiridos en materias básicas y tecnológicas propias de la Arquitectura Naval.

OBJETIVO 2: Que los estudiantes alcancen la madurez necesaria para resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y para comunicar y transmitir conocimientos, habilidades y destrezas en los procesos del proyecto y la construcción de buques.

OBJETIVO 3: Que los estudiantes se formen en la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planos de labores y otros trabajos análogos en el ámbito de la Arquitectura Naval.

OBJETIVO 4: Que los estudiantes se formen en el trabajo en un entorno multilingüe y multidisciplinar

OBJETIVO 5: Que los estudiantes alcancen la capacidad necesaria para la redacción, firma y desarrollo de proyectos en el ámbito de la ingeniería naval y oceánica, de acuerdo con los conocimientos adquiridos según lo establecido en el Apartado 3.2 de esta memoria, que formen parte de las actividades de construcción, montaje, transformación, explotación, mantenimiento, reparación, o desguace de buques, embarcaciones y artefactos marinos, así como las de fabricación, instalación, montaje o explotación de los equipos y sistemas navales y oceánicos.

Competencias Específicas del Título que Se Adquiren con esta Asignatura:

CE1 (**Nuvel 3**): Capacidad para la resolución de los problemas matemáticos que pueden plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal y geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.

Competencias Generales/transversales del Título que Se Adquieren con esta Asignatura:

CG5 (Nivel 3): Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto gradote autonomía.

CT UPM 4 (Nivel 3): Uso de las TIC

Resultados de Aprendizaje:

RA1: Estudiar la continuidad y diferenciabilidad de funciones de varias variables reales. Calcular sus derivadas parciales, direccionales y diferencial.

RA2: Obtener derivadas de funciones por derivación implícita.

RA3: Aproximar funciones por su polinomio de Taylor.

RA4: Calcular extremos de funciones de varias variables con y sin ligaduras.

RA5: Calcular integrales en recintos del plano y del espacio en coordenadas cartesianas y en otros sistemas de coordenadas ortogonales. Aplicarlas a problemas de física e ingeniería.

RA6: Calcular e interpretar los operadores diferenciales fundamentales de la física aplicados a campos escalares y vectoriales.

RA7: Identificar los campos conservativos y solenoidales y obtener potenciales para ellos.

RA8: Calcular integrales de funciones a lo largo de curvas, longitudes y circulaciones entre ellas. Calcular integrales de funciones sobre superficies, áreas y flujos entre ellas.

RA9: Calcular integrales de flujo y circulación usando los teoremas integrales. Aplicarlas a problemas de física.

Indicadores de Logro:

- **T1-01** Estudiar la continuidad y diferenciabilidad de funciones de varias variables reales. RA1
- T1-02 Calcular las derivadas parciales de una función de varias variables. RA1
- T1-03 Calcular la diferencial de una función y su matriz jacobiana. RA1
- T1-04 Calcular derivadas direccionales de una función de varias variables. RA1
- T1-05 Obtener derivadas de funciones por derivación implícita. RA2
- T1-06 Aproximar funciones por su polinomio de Taylor. RA3
- T1-07 Calcular extremos de funciones de varias variables. RA4
- T1-08 Clasificar los extremos de funciones de varias variables a partir de la matriz hessiana. RA4
- **T1-09** Calcular extremos de funciones con ligaduras por el método de multiplicadores de Lagrange. RA4
- T2-01 Calcular integrales en recintos del plano en coordenadas cartesianas. RA5
- T2-02 Calcular integrales en recintos del plano en otros sistemas de coordenadas (polares). RA5
- T2-03 Calcular integrales en recintos del espacio en coordenadas cartesianas. RA5
- **T2-04** Calcular integrales en recintos del espacio en otros sistemas de coordenadas (cilíndricas, esféricas). RA5
- **T2-05** Aplicarlas estas integrales a problemas de física e ingeniería (cálculo de centros de masa, momentos de inercia). RA5

- **T3-01** Calcular e interpretar los operadores diferenciales fundamentales de la física aplicados a campos escalares y vectoriales (gradiente, divergencia, rotacional, laplaciano). RA6
- T3-02 Identificar los campos conservativos e irrotacionales y obtener potenciales escalares para ellos en su caso. RA7
- T3-03 Identificar los campos solenoidales y adivergentes y obtener potenciales vectoriales o funciones de corriente para ellos en su caso. RA7
- T3-04 Calcular integrales de funciones a lo largo de curvas (longitudes, centros de masa, momentos).RA8
- T3-05 Calcular circulaciones de campos vectoriales a lo largo de curvas. RA8
- T3-06 Calcular integrales de funciones sobre superficies (áreas, centros de masa, momentos). RA8
- T3-07 Calcular flujos de campos vectoriales a través de superficies. RA8
- T3-08 Calcular integrales de flujo usando los teoremas de Stokes y Gauss. RA9
- T3-09 Calcular integrales de circulación usando el teorema de Stokes y el potencial escalar. RA9
- T3-10 Aplicarlas a problemas de física. RA9

Temario

Programa / Temario / Contenidos:

1. Cálculo diferencial para funciones de varias variables

- 1. Topología de R^n. Límites y continuidad de funciones de varias variables.
- 2. Derivadas parciales y direccionales.
- 3. Diferencial de una función. Matriz jacobiana.
- 4. Derivadas parciales sucesivas. Lema de Schwartz.
- 5. Desarrollo de Taylor de una función.
- 6. Extremos relativos.
- 7. Extremos condicionados. Multiplicadores de Lagrange.
- 8. Derivación implícita.
- 9. Sistemas de coordenadas polares, cilíndricas, esféricas.

2. Cálculo integral para funciones de varias variables

- 1. Integración en recintos del plano.
- 2. Integración en recintos del espacio.
- 3. Aplicaciones a geometría de masas.
- 4. Curvas parametrizadas. Elemento de longitud.
- 5. Integración de funciones a lo largo de curvas. Longitudes.
- 6. Superficies parametrizadas. Elemento de superficie.
- 7. Integración de funciones sobre superficies. Áreas.

3. Cálculo vectorial

- 1. Campos escalares y vectoriales.
- 2. Operadores fundamentales de la física (gradiente, divergencia, rotacional, laplaciano).
- 3. Integral de línea a lo largo de curvas.
- 4. Integral de flujo sobre superficies.
- 5. Teoremas integrales de Green, Gauss, Stokes.
- 6. Campos conservativos.
- 7. Campos solenoidales.

1. Cálculo diferencial para funciones de varias variables

- 1. Topología de R^n. Límites y continuidad de funciones de varias variables.
- 2. Derivadas parciales y direccionales.
- 3. Diferencial de una función. Matriz jacobiana.
- 4. Derivadas parciales sucesivas. Lema de Schwartz.
- 5. Desarrollo de Taylor de una función.
- 6. Extremos relativos.
- 7. Extremos condicionados. Multiplicadores de Lagrange.
- 8. Derivación implícita.
- 9. Sistemas de coordenadas polares, cilíndricas, esféricas.

2. Cálculo integral para funciones de varias variables

- 1. Integración en recintos del plano.
- 2. Integración en recintos del espacio.
- 3. Aplicaciones a geometría de masas.
- 4. Curvas parametrizadas. Elemento de longitud.

- 5. Integración de funciones a lo largo de curvas. Longitudes.
- 6. Superficies parametrizadas. Elemento de superficie.
- 7. Integración de funciones sobre superficies. Áreas.

3. Cálculo vectorial

- 1. Campos escalares y vectoriales.
- 2. Operadores fundamentales de la física (gradiente, divergencia, rotacional, laplaciano).
- 3. Integral de línea a lo largo de curvas.
- 4. Integral de flujo sobre superficies.
- 5. Teoremas integrales de Green, Gauss, Stokes.
- 6. Campos conservativos.
- 7. Campos solenoidales.

Distribución de actividades formativas

	Tipo de grupo	Tiempo	Método docente
Presencial de		60	LM (lección
Aula (teoría y			magistral), ABP
Problemas)			(aprendizaje
ŕ			basado en
			problemas), RP
			(resolución de
			problemas)
Presencial de			
Laboratorios,			
Campo, Etc.			
Otras			
Actividades			
Formativas			
Presenciales:			
Tutorías,			
Seminarios,			
Conferencias,			
Visitas, Etc			
Trabajos			
Cooperativos			
Trabajo			
Personal del			
Alumno			
(búsqueda de			
Información,			
Realización de			
Trabajos			
Individuales y			
Estudio)			

Metodología docente y cronograma

Modalidades Organizativas y Métodos de Enseñanza Empleados:

Se combinarán lecciones magistrales con clases de resolución de problemas.

Evaluación

Evaluación Continua:

Sí

Método de Evaluación de Asignatura:

Se podrá elegir entre un sistema basado en evaluación continua y prueba final o exclusivamente prueba final.

Método de Evaluación de Prácticas:

SIN DATOS

Evaluación Sumativa:

- Ejercicios propuestosy participación
 - o Lugar: Aula
 - o Peso en la calificación: 10%

Controles

Lugar: Aula de exámenesPeso en la calificación: 40%

Examen Final

Lugar: Aula de exámenesPEso en la calificación: 50%

Criterios de Calificación:

La nota final se obtendrá como sigue:

- 10% Control 1.
- 10% Control 2.
- 10% Control 3.
- 10% Control 4.
- 10% Ejercicios y actividades propuestos en clase.
- 50% Examen final.

Los estudiantes que así lo indiquen, durante las tres primeras semanas lectivas, podrán seguir el sistema de calificación basado en una únicaprueba final.

La nota obtenida en el control 3 permitirá recuperar hasta un 50% de la media de las notas de los controles 1 y 2.

Recursos de Enseñanza y Aprendizaje

Bibliografía Básica y Material Didáctico:

- T.M. Apostol, "Calculus. Vol. II", 2 edición, Reverté (1972)
- D.A. Danielson, "Vectors and Tensors in Engineering and Physics", Addison Wesley (1992)
- R. Larson, R. Hostetler, B.H. Edwards, "Cálculo. Volumen 2", 8 edición, McGraw-Hill (2005)
- J.E. Marsden, A.J. Tromba, "Cálculo Vectorial", Addison Wesley Iberoamericana (1991)
- J.E. Marsden, A.J. Tromba, "Cálculo Vectorial: Problemas resueltos", Addison-Wesley Iberoamericana (1991)
- M. Spiegel, "Teoría y problemas de análisis vectorial y una introducción al análisis tensorial", McGraw-Hill (1981)
- J. Stewart, "Cálculo: conceptos y contexto", 3 edición, International Thomson (2006)

Cronograma de trabajo de la asignatura

Semana	Actividades Aula	Horas	Trabajo Individual	Horas	Actividades Evaluación	Otros
1	Tema 1.1	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 1.1	5h.		
2	Temas 1.2, 1.3	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 1.2, 1.3	5h-		
3	Temas 1.4, 1.5	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 1.4, 1.5	5h.		
4	Tema 1.6, 1.7	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 1.6, 1.7	5h.		
5	Tema 1.8, 1.9	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 1.8, 1.9	5h.		
6	Tema 1.9	2h. prácticas, 2h. evaluación	Lectura y ejercicios propuestos de 1.9	3h.	Control Tema 1	

7	Tema 2.1	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 2.1	5h.	
8	Tema 2.2	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 2.2	5h.	
9	Tema 2.3	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 2.3	5h.	
10	Tema 2.4, 2.5	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 2.4, 2.5	5h.	

Semana	Actividades Aula	Horas	Trabajo Individual	Horas	Actividades Evaluación	Otros
11	Tema 2.6, 2.7	1h. teórica, 2h. prácticas, 1h. evaluación	Lectura y ejercicios propuestos de 2.6, 2.7	4h.	Control Tema 2	
12	Tema 3.1, 3.2	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 3.1, 3.2	5h.		
13	Tema 3.3, 3.4	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 3.3, 3.4	5h.		

14	Tema 3.4, 3.5	2h. teóricas, 2h. prácticas	Lectura y ejercicios propuestos de 3.5	5h.		
15	Tema 3.6, 3.7	1h. teórica, 2h. prácticas, 1h. evaluación	Lectura y ejercicios propuestos de 3.6, 3.7	4.h	Control Tema 3	
Exámenes						